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Abstract. In 1985, Goyal developed an Economic order quantity (EOQ) model under condi-
tions of permissible delay in payments. Jamal et al. then generalized Goyal’s model for dete-
riorating items with completely backlogging. However, they only ran several simulations to
indicate that the total relevant cost may be convex. Recently, Teng amended Goyal’s model
by considering the difference between unit price and unit cost, and provided an alternative
conclusion that it makes economic sense for some retailers to order less quantity and take
the benefits of the permissible delay more frequently. However, he did not consider deterio-
rating items and partial backlogging. In this paper, we establish a general EOQ model for
deteriorating items when the supplier offers a permissible delay in payments. For generality,
our model allows not only the partial backlogging rate to be related to the waiting time but
also the unit selling price to be larger than the unit purchase cost. Consequently, the pro-
posed model includes numerous previous models as special cases. In addition, we mathemat-
ically prove that the total relevant cost is strictly pseudo-convex so that the optimal solution
exists and is unique. Finally, our computational results reveal six managerial phenomena.
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1. Introduction

The traditional economic order quantity (EOQ) model assumes that the
retailer must pay for the items as soon as the items are received. Indeed,
goods are seldom paid for immediately after they appear in a retailer’s
stockroom. In market behaviors, nearly all firms rely to some extent on
trade credit as a source of short-term funds. In fact, small firms generally
use trade credit more extensively than large firms. When monetary policy
is tight and credit is difficult to obtain, small firms tend to increase their
reliance on trade credit. That is, during periods of tight money, small firms



246 L. -Y. OUYANG ET AL.

that are unable to obtain sufficient funds through normal channels may
obtain financing indirectly from large suppliers by “stretching” their pay-
ment periods and extending accounts payable. Large firms often are willing
to finance their smaller customers in this manner in order to preserve their
markets. Ordinarily the forms of trade credit are open account, promissory
note, and trade acceptance (e.g., see Solomon and Pringle, 1980). As to a
retailer conducting business with foreign suppliers, it must pay attention to
the exchange rates between foreign currencies and its own currency, and the
effects of fluctuating currency values in its financial analysis.

In this paper, we assume that a supplier often offers his retailers a period
of time, perhaps 30 days, to settle the amount owed to him. Usually, there
is no interest charge if the outstanding amount is paid within the permis-
sible delay period of 30 days. Note that this credit term in financial man-
agement is denoted as “net 30” (e.g., see Brigham, 1995). However, if the
payment is not paid in full by the end of the permissible delay period, then
interest is charged on the outstanding amount under the terms and condi-
tions agreed upon. Therefore, a retailer will earn the interest on the accu-
mulated revenue received, and delay payment until the last moment of the
permissible period allowed by the supplier. The permissible delay in pay-
ments reduces the cost of holding inventory to the retailer for the duration
of the permissible period. Hence, it is a marketing strategy for the sup-
plier to attract new retailers who consider it to be a type of cost (or price)
reduction. However, the strategy of granting credit terms adds not only an
additional cost but also an additional dimension of default risk to the sup-
plier.

Goyal (1985) developed an EOQ model under conditions of permissible
delay in payments. He assumed that the unit purchase cost is the same as the
selling price per unit, and concluded that “as a result of permissible delay
in setting the replenishment account, the economic replenishment interval
and order quantity generally increases marginally, although the annual cost
decreases considerably.” Although Dave (1985) amended Goyal’s model by
the fact that the selling price is necessarily higher than its purchase price, his
viewpoint did not draw much attention in subsequent research. Aggarwal
and Jaggi (1995) then extended Goyal’s model to include deteriorating items.
Jamal et al. (1997) further generalized the model to allow for shortages and
deterioration. However, they only ran several simulations to indicate that the
total relevant cost may be convex. Hwang and Shinn (1997) developed the
optimal pricing and lot sizing for the retailer under the condition of per-
missible delay in payments. Liao et al. (2000) developed an inventory model
for a stock-dependent demand rate when a delay in payment is permissible.
Recently, Chang and Dye (2001) extended the model by Jamal et al. to allow
for not only a varying deterioration rate but also requiring the backlogging
rate to be inversely proportional to the waiting time. All of the above models
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(except Dave 1985) ignored the difference between unit price and unit cost,
and obtained the same conclusion as in Goyal (1985). In contrast, Jamal
et al. (2000) and Sarker et al. (2000) amended Goyal’s model by considering
the difference between unit price and unit cost, and concluded from compu-
tational results that the retailer should settle his account relatively sooner as
the unit selling price increases relative to the unit cost. Recently, Teng (2002)
provided an alternative conclusion from Goyal (1985), and mathematically
proved that it makes economic sense for a well-established buyer to order less
quantity and take the benefits of the permissible delay more frequently. How-
ever, he did not include deteriorating items and partial backlogging. Chang
et al. (2003) then extended Teng’s model, and established an EOQ model
for deteriorating items in which the supplier provides a permissible delay to
the retailer if the order quantity is greater than or equal to a predetermined
quantity.

For fashionable commodities, trendy apparel, and high-tech products
with short product life cycle, the willingness for a customer to wait for
backlogging during a shortage period is diminishing with the length of the
waiting time. Hence, the longer the waiting time is, the smaller the backlog-
ging rate would be. To reflect this phenomenon, Abad (1996) proposed sev-
eral distinct backlogging rates to be decreasing functions of waiting time.
Chang and Dye (1999) then developed a finite-horizon inventory model by
using Abad’s reciprocal backlogging rate. Concurrently, Papachristos and
Skouri (2000) established a multi-period inventory model based on Abad’s
exponential backlogging rate. Recently, Teng et al. (2002) extended the frac-
tion of unsatisfied demand backordered to any decreasing function of the
waiting time up to the next replenishment.

In this paper, we establish an appropriate and general EOQ model for a
retailer to determine its optimal shortage interval and replenishment cycle
when the supplier offers a permissible delay in payments. For generality,
our model allows not only the partial backlogging rate to be related to
the waiting time but also the unit selling price to be larger than the unit
purchase cost. Consequently, the proposed model is in a general frame-
work that includes numerous special cases presented in Aggarwal and
Jaggi (1995), Chang and Dye (1999, 2001), Dave (1985), Goyal (1985),
Jamal et al. (1997), Papachristos and Skouri (2000), Teng (2002) and Teng
et al. (1999, 2002, 2003). We then mathematically prove that the total rel-
evant cost (i.e., the sum of ordering cost, purchase cost, backlogging cost,
cost of lost sales, interest payable, and interest earned) is a strictly pseudo-
convex function. As a result, there exists a unique optimal solution to our
proposed model. In contrast to our theoretical result, Jamal et al. (1997)
only ran several simulations that indicated the surface of the total relevant
cost may be convex. Finally, we perform several sensitivity analyses and
obtain six managerial phenomena.
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2. Assumptions and Notation

The mathematical models proposed in this paper are based on the follow-
ing assumptions:

(1) The demand for the item is constant with time.
(2) Lead time is zero.
(3) The initial inventory level is zero.
(4) Shortages are allowed. However, the longer the waiting time, the

smaller the backlogging rate. Hence, we assume that the fraction of
shortages backordered β(x) (with 0 < β(x) � 1 and β (0) = 1) is a
decreasing and differentiable function of x, where x is the waiting
time up to the next replenishment. Consequently, the first derivative
of β(x), β ′(x), is less than or equal to zero, for all x �0.

(5) During the shortage period, the retailer can obtain the interest earned
on the order cost due to the delay in placing the order. However, the
retailer will pay not only the shortage cost for backlogged items but
also the opportunity cost for lost sales. Note that the cost of lost sales
in a minimization problem is the sum of the cost of lost revenue and
the cost of lost goodwill (e.g., see Teng et al. 2002). As a result, the
cost of lost sales must be greater than or equal to the selling price.

(6) A constant fraction of the on-hand inventory deteriorates per unit of
time and there is no repair or replacement of the deteriorated inventory.

(7) The supplier provides a certain fixed credit period to settle the
account. During the trade credit period, sales revenue is deposited in
an interest bearing account. At the end of the permissible delay, the
retailer has two ways to pay off the loan. One is that the retailer pays
off all units sold, keeps the rest for the use of the other activities, and
starts paying for the interest charges on the items in stocks. The other
is that the retailer pays off the loan whenever he/she has money, such
as in Jamal et al. (2000), Sarker et al. (2000), and Chang and Teng
(2004). In this paper, we will discuss both possible ways.

In addition, the following notation is used throughout this paper.

C0 the ordering cost per order
Ch the holding cost excluding interest charge ($/unit/per

year)
Cs the shortage cost for backlogged items ($/unit/per year)
p the selling price per unit
Cl the unit cost of lost sales, which is the sum of lost reve-

nue and lost goodwill, hence Cl �p (for detail, see Teng
et al. 2002)

Cp the unit purchasing cost, with Cp <p
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D demand rate (units/per year)
Ie the annual interest rate earned per dollar
Ic the annual interest rate charged per dollar
M the period of permissible delay in settling the account, in

years
S the length of the shortage period, in years
T the length of the inventory cycle, 0�S <T , in years
θ the constant deterioration rate, where 0� θ <1
Q the order quantity
I1(t) the level of negative inventory at time t , 0� t �S

I2(t) the level of positive inventory at time t , S � t �T

AC(S, T ) the total annual relevant cost, which is a function of S

and T

AC1 (S, T ) the total annual relevant cost for Case 1, in which the
retailer pays off only units sold, and keeps the profit for
the use of the other activities at time M + S with S <

M +S �T

AC2 (S, T ) the total annual relevant cost for Case 2, in which the
retailer pays off only units sold, and keeps the profit for
the use of the other activities at time M +S with S <T �
M +S

AC3 (S, T ) the total annual relevant cost for Case 3, in which the
retailer pays off the total amount on its account at time
M +S with S <M +S �T

AC4 (S, T ) the total annual relevant cost for Case 4, in which the
retailer pays off the total amount on its account at time
M +S with S <T �M +S

Next, we will discuss seven possible relevant costs related to the prob-
lem, and how each of the costs will weigh into the difficulty of determining
whether the total cost function is convex.

3. Mathematical Model

The total relevant cost per cycle consists of: (a) cost of placing an order,
(b) cost of shortage, (c) cost of lost sales, (d) cost of purchasing, (e) cost
of holding inventory (excluding interest charges), (f) cost of interest charges
for unsold items after the permissible delay M (note that this cost occurs
only if S < M + S � T ), and (g) interest earned from sales revenue during
the permissible period. However, there are two possible total relevant costs
based on the values of T and M +S.

The supplier offers the retailer the permissible payment delay, M, in
order to stimulate the demand. Consequently, there are two possible
scenarios:
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Figure 1. Inventory system with S <M +S �T .

Lost sales

Q
I2(S)

I1(S)

S0 T M+S
Time

Inventory

Figure 2. Inventory system with S <T �M +S.

(A) The end of the credit period, M +S, is shorter than or equal to the
length of the replenishment cycle T (i.e., S <M +S �T ). The graph-
ical representation is depicted in Figure 1.

(B) The end of the credit period, M + S, is longer than or equal to the
length of the replenishment cycle T (i.e., S <T �M +S), The graph-
ical representation in this case is depicted in Figure 2.

From Figures 1 and 2, we know that during the time t ∈ [0, S] the level of
negative inventory I1(t) is the cumulative backlogged demand up to t. At
time S, an order is made and the quantity received is used partly to meet
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the accumulated backlogged demand in [0, S]. The positive inventory I2(t)

during [S,T ] gradually decreases due to consumption and deterioration.
Hence, the variation of inventory with respect to time can be described by
the following differential equations:

dI1(t)

dt
=−β (S − t)D, 0� t �S, (1)

dI2(t)

dt
+ θI2 (t)=−D, S � t �T , (2)

with the boundary conditions: I1 (0) = I2(T ) = 0. Consequently, the
solutions to Equations (1) and (2) are given by

I1 (t)=−
∫ t

0
β(S −u)D du, 0� t �S, (3)

and

I2 (t)= D

θ
[eθ(T −t) −1], S � t �T , (4)

respectively.
Therefore, the total relevant cost per replenishment cycle consists of the

following elements.
(a) The ordering cost per order is fixed at C0. However, the retailer earns

the interest of C0SIe on the order cost due to the delay S in placing the
order. Consequently, the total ordering cost is

OC=C0 −C0SIe, (5)

which is a linear function of S.
(b) The shortage cost for backlogged items is given by

SC =Cs

∫ S

0
[−I1(t)]dt =Cs

∫ S

0

∫ t

0
β(S −u)D du dt

=CsD

∫ S

0
(S −u)β(S −u)du=CsD

∫ S

0
tβ (t)dt, (6)

which is a convex function of S because d2
SC/dS2 =CsD[β(S)−Sβ ′(S)]>0.

(c) The opportunity cost of lost sales is given by

LS=Cl

∫ S

0
[1−β(S −u)]D du=ClD

[
S −

∫ S

0
β (S −u)du

]

=ClD

[
S −

∫ S

0
β(t)dt

]
, (7)
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which is a convex function of S because d2
LS/dS2 =−ClDβ ′(S)>0.

(d) The purchasing cost can be obtained by

PC =CpQ=Cp [I2(S)− I1(S)]

=Cp

[
D

θ
(eθ(T −S) −1)+

∫ S

0
β (S −u)D du

]

=Cp

[
D

θ
(eθ(T −S) −1)+

∫ S

0
β (t)D dt

]
, (8)

which is neither convex nor concave because the Hessian matrix is

(
∂2PC

∂T 2

)(
∂2PC

∂S2

)
−

(
∂2PC

∂T ∂S

)2

=CpDθeθ(T −S)β ′(S)<0.

(e) The holding cost during the interval [S,T ] is given by

HC =Ch

∫ T

S

I2(t)dt =Ch

∫ T

S

D

θ
(eθ(T −t) −1)dt

= ChD

θ2

[
eθ(T −S) −1− θ (T −S)

]
. (9)

We cannot determine whether HC is convex or not because the Hessian
matrix is

(
∂2HC

∂T 2

)(
∂2HC

∂S2

)
−

(
∂2HC

∂T ∂S

)2

=0.

Regarding interests charged and earned (i.e., costs of (f) and (g)), we have the
following four possible cases based on how the retailer pays off the loan, and
the values of T, and S +M. These four cases are described below.

Case 1. The retailer pays off only units sold, and keeps the profit for the
use of the other activities at time M +S with S <M +S �T .

In this case, the end point of credit period M +S is shorter than or equal
to the period of the replenishment cycle T. As a result, the products unsold
after M +S must be financed with an annual rate Ic. Therefore, the interest
charged per cycle is given by

IC =CpIc

∫ T

M+S

I2(t)dt = CpIcD

θ2
[eθ(T −M−S) −1− θ (T −M −S)]. (10)
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We cannot determine whether IC is convex in (S, T ) because the Hessian
matrix is

(
∂2IC

∂T 2

)(
∂2IC

∂S2

)
−

(
∂2IC

∂T ∂S

)2

=0.

On the other hand, during the period [S,M +S], the retailer deposits the
sales revenue to earn interest with an annual rate Ie. Hence, the interest
earned per cycle is given by

IE =pIeM

∫ S

0
β(S −u)D du+pIe

∫ M+S

S

D · (u−S)du,

= pDIeM

2

[
M +2

∫ S

0
β(S −u)du

]

= pDIeM

2

[
M +2

∫ S

0
β(t)dt

]
, (11)

which is a concave function of S because d2IE/dS2 =pDIeMβ ′(S)<0.

Therefore, the total annual relevant cost is calculated as

AC1 (S, T )= OC +HC +SC +LS +PC + IC − IE

T

= C0 (1−SIe)

T
+ ChD

[
eθ(T −S) −1− θ (T −S)

]
θ2T

+CsD
∫ S

0 tβ(t)dt

T
+

ClD
[
S − ∫ S

0 β(t)dt
]

T

+
CpD

[
(eθ(T −S) −1)+ θ

∫ S

0 β(t)dt
]

θT

+CpDIc
[
eθ(T −M−S) −1− θ (T −M −S)

]
θ2T

−
pDIeM

[
M +2

∫ S

0 β(t)dt
]

2T
. (12)

Note that the denominator of AC1(S, T ) is the decision variable T, not
a constant. Consequently, it is difficult to determine whether AC1(S, T ) is
convex or not. However, we are able to prove that AC1(S, T ) is strictly
pseudo-convex in the next section.

Case 2. The retailer pays off only units sold, and keeps the profit for the
use of the other activities at time M +S with S <T �M +S.
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In this case, the end point of credit period M + S is longer than or
equal to the period of the replenishment cycle T. The ordering cost, short-
age cost, opportunity cost of lost sales, purchasing cost and holding cost
are completely analogous with those in Case 1. However, in this case, the
retailer has no interest to pay while it earns the interest during the credit
period. Therefore, the interest earned in this case is given by

IE =pDIe

[
(T −S)2

2
+ (T −S) (M +S −T )+M

∫ S

0
β(S −u)du

]

=pDIe

[
(T −S)2

2
+ (T −S) (M +S −T )+M

∫ S

0
β(t)dt

]
, (13)

which is a concave function of (S,T ) because the Hessian matrix is positive
definite,

(
∂2IE

∂T 2

)(
∂2IE

∂S2

)
−

(
∂2IE

∂T ∂S

)2

=−pDIeMβ ′(S)>0,

and

∂2IE

∂T 2
=−pDIe <0.

As a result, the total annual relevant cost is given as

AC2 (S, T )= OC +HC +SC +LS +PC − IE

T

= C0 (1−SIe)

T
+ ChD

[
eθ(T −S) −1− θ (T −S)

]
θ2T

+CsD
∫ S

0 tβ(t)dt

T
+ ClD[S − ∫ S

0 β(t)dt ]

T

+CpD[(eθ(T −S) −1)+ θ
∫ S

0 β(t)dt ]

θT

−pDIe[(T −S)2 +2 (T −S) (M +S −T )+2M
∫ S

0 β(t)dt ]

2T
.

(14)

Again, whether AC2 (S, T ) is convex is hard to be determined because its
denominator is T, not a constant. However, we are able to show that it is
strictly pseudo-convex in the next section.
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Case 3. The retailer pays off the total amount on its account at time M +S

with S <M +S �T .

During [S,M +S] period, the retailer deposits the revenue from sales into
an account that earns Ie per dollar per unit time. Therefore, the accumula-
tive interest earned per cycle at time M +S is

pIe

[
M

∫ S

0
β(s − t)D dt +

∫ M

0
D tdt

]
=pIeD

(
M

∫ S

0
β(t)dt +M2/2

)

(15)

Hence, the retailer has pD(
∫ S

0 β(t)dt + M) + pIeD(M
∫ S

0 β(t)dt + M2/2) in
the account at time M + S. In the meantime, at time M + S, the retailer
owes the wholesaler the total purchase cost

CpQ=Cp

[
D

θ

(
eθ(T −S) −1

)+
∫ S

0
β(t)D dt

]
. (16)

From the difference between the total purchase cost and the money in the
account at time M +S, we have the following two possible cases:

(a) pD

(∫ S

0
β(t)dt +M

)
+pIeDM

(∫ S

0
β(t)dt + M

2

)

�Cp

[
D

θ
(eθ(T −S) −1)+

∫ S

0
β(t)D dt

]
,

and

(b) pD

(∫ S

0
β(t)dt +M

)
+pIeDM

(∫ S

0
β(t)dt + M

2

)

�Cp

[
D

θ
(eθ(T −S) −1)+

∫ S

0
β(t)D dt

]
.

For simplicity, we will discuss only the first case. The reader can easily
obtain the similar results for the other case.

If pD(
∫ S

0 β(t)dt + M) + pIeDM(
∫ S

0 β(t)dt + M
2 ) � Cp[ D

θ
(eθ(T −S) − 1)+∫ S

0 β(t)D dt ], then the retailer is able to pay off the total purchase cost at
time M+S. Consequently, there is no interest payable to the retailer in this
case (i.e., IC =0). In addition, the retailer receives the interest earned dur-
ing [M +S,T ] as

Ie(T −M −S)f (S, T )+pDIe(T −M −S)2/2, (17)
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where,

f (S, T )=pD

(∫ S

0
β(t)dt +M

)
+pDIeM

(∫ S

0
β(t)dt +M/2

)

−CpD

[
1
θ

(
eθ(T −S) −1

)+
∫ S

0
β(t)dt

]
. (18)

As a result, the retailer receives the interest earned during [0, T ] as

IE =pDIe

[
M

∫ S

0
β(t)dt + M2

2

]
+ Ie (T −M −S)f (S, T )

+pDIe(T −M −S)2

2
. (19)

Therefore, the total annual relevant cost is calculated as

AC3 (S, T )= OC +HC +SC +LS +PC − IE

T

= C0 (1−SIe)

T
+ ChD

[
eθ(T −S) −1− θ (T −S)

]
θ2T

+CsD
∫ S

0 tβ(t)dt

T
+ ClD[S − ∫ S

0 β(t)dt ]

T

+CpD[
(
eθ(T −S) −1

)+ θ
∫ S

0 β(t)dt ]

θT

−
pDIeM

(
2
∫ S

0 β(t)dt +M
)

2T

−2Ie (T −M −S)f (S, T )+pDIe (T −M −S)2

2T
. (20)

Due to its complexity, we could not determine whether AC3 (S, T ) is
strictly pseudo-convex or not.

Case 4. The retailer pays off the total amount on its account at time M +S

with S <T �M +S.

Since T �M +S, the retailer will pay off the total purchase cost at time
M + S for either Case 2 and Case 4. Consequently, Case 4 is exactly the
same as Case 2.

4. Theoretical Results and an Algorithm

In this section, we will show that the total annual relevant cost in each of
first two cases is strictly pseudo-convex. As a result, the optimal solution
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to the problem exists and is unique. Finally, we propose an algorithm to
solve the problem. Likewise, the reader can obtain similar results for the
other two cases.

Case 1. The retailer pays off only units sold, and keeps the profit for the
use of the other activities at time M +S with S <M +S �T .

To minimize the total annual relevant cost, taking the first derivative of
AC1 (S, T ) with respect to S and T, and setting the results to be zero, we obtain

∂AC1(S, T )

∂T
= −AC1 (S, T )

T

+D

T

[
eθ(T −S)

(
Ch

θ
+Cp + CpIce−θM

θ

)
− Ch

θ
− CpIc

θ

]

=0, (21)

and

∂AC1(S, T )

∂S
= D

T

{
− C0Ie

D
+ Ch

θ

[
1− eθ(T −S)

]+CsSβ(S)+Cl [1−β(S)]

+Cp
[−eθ(T −S) +β(S)

]

+CpIc

θ

[
1− eθ(T −M−S)

]−pIeMβ(S)

}
=0. (22)

Let S∗
1 and T ∗

1 denote the optimal values of S and T, respectively, then
the optimal solution (S∗

1 , T ∗
1 ) satisfies (21) and (22) simultaneously. Next,

we can easily prove that the associated Hessian matrix at point (S∗
1 , T ∗

1 ) is
a positive definite matrix (see Appendix A for the proof). In addition, from
(12) and (22), we can obtain the following theoretical results.

THEOREM 1.

(a) AC1(S, T ) is a strictly pseudo-convex function on the set J ={(S, T )|0<

S <T }.
(b) If CsTβ(T ) + (Cl − Cp) [1−β(T )] + CpIc

θ
[1 − e−θM ] > (C0Ie)/(D) +

pIeMβ(T ), then there exists a unique interior optimal solution S∗
1 (with

0<S∗
1 <T1) to (22).

(c) If CsTβ(T ) + (Cl − Cp) [1−β(T )] + CpIc

θ
[1 − e−θM ] � (C0Ie)/(D) +

pIeMβ(T ), then the optimal solution to (22) is a boundary solution (with
S∗

1 = T1), and the problem reduces to determine T ∗
1 only (Note that this

case is unrealistic.)
(d) There always exists a unique interior solution T ∗

1 (with 0 < T ∗
1 < ∞)

to (21).
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Proof. See Appendix B.
From (21) to (22), we can obtain the following two equations:

T =S + 1
θ

ln
[
Dg2(S)

θk1

]
, (23)

and

T = 1
θ

+ g1(S)

Dg2(S)
, (24)

where k1 = (Ch+θCp+CpIce−θM)D
θ2 ,

g1(S)=D

{
C0 (1−SIe)

D
− Ch

θ2
+ ChS

θ
+Cs

∫ S

0
tβ(t)dt

+Cl

(
S −

∫ S

0
β(t)dt

)
− Cp

θ
+Cp

∫ S

0
β(t)dt − CpIc

θ2

+CpIc (M +S)

θ
−pIe

M

2

(
M +2

∫ S

0
β(t)dt

)}
,

and

g2(S)= Ch

θ
+Cl [1−β(S)]+CsSβ(S)+Cpβ(S)

+CpIc

θ
− C0Ie

D
−pIeMβ(S).

It is trivial from (23) and (24) that

S + 1
θ

ln
[
Dg2(S)

θk1

]
− 1

θ
− g1(S)

Dg2(S)
=0. (25)

Consequently, we can obtain the value of S∗
1 from (25) by using

Newton–Raphson Method (or any bisection method). We then get T ∗
1 by using

(23) or (24). Therefore, we have the corresponding minimum total annual rele-
vant cost AC1(S

∗
1 , T ∗

1 ), which can be obtained by (12).

Case 2. S <T �M +S The case is the same as Case 4.

To minimize the total annual relevant cost, taking the first derivative of
AC2 (S, T ) with respect to S and T, and setting the result to be zero, we
obtain

∂AC2(S, T )

∂T
= −AC2 (S, T )

T
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+D

T

[
eθ(T −S)

(
Ch

θ
+Cp

)
− Ch

θ
−pIe (M +S −T )

]

=0. (26)

∂AC2 (S, T )

∂S
= D

T

{
− C0Ie

D
+ Ch

θ

[
1− eθ(T −S)

]+CsSβ(S)+Cl [1−β(S)]

+Cp
[−eθ(T −S) +β(S)

]

+pIe [(M +S −T )−Mβ(S)]
}

=0. (27)

Let S∗
2 and T ∗

2 denote the optimal values of S and T, respectively, then
the optimal solution (S∗

2 , T ∗
2 ) satisfies (26) and (27) simultaneously. Again,

the associated Hessian matrix at point
(
S∗

2 , T ∗
2

)
is a positive definite matrix

(The proof is similar to that in Appendix A). Likewise, from (14) and (27),
we can obtain the following theoretical results.

THEOREM 2.

(a) AC2(S, T ) is a strictly pseudo-convex function on the set J =
{(S, T )|0<S <T }.

(b) If CsTβ(T ) + (Cl − Cp)[1 − β(T )] + pIeM[1 − β(T )] > C0Ie
D

, then there
exists a unique interior optimal solution S∗

2 (with 0<S∗
2 <T2) to (27).

(c) If CsTβ(T ) + (Cl − Cp)[1 − β(T )] + pIeM[1 − β(T )] � C0Ie
D

, then the
optimal solution to (27) is a boundary solution (with S∗

2 = T2), and
the problem reduces to determine T ∗

2 only (Note that this case does
not happen in the real world.)

(d) There always exists a unique interior solution T ∗
2 (with 0<T ∗

2 <∞ to
(26).

Proof. The proof is similar to that in Theorem 1.
From (26) to (27), we see that (S∗

2 , T ∗
2 ) satisfies the following equations

simultaneously:

eθ(T −S)

(
Ch + θCp

θ2

)
+g3(S)=T eθ(T −S)

(
Ch + θCp

θ

)
+ pIeT

2

2
. (28)

and

eθ(T −S)

(
Ch + θCp

θ

)
+pIeT =g4(S), (29)

where

g3(S)=S

(
Ch

θ
+Cl +pIeM − C0Ie

D

)
+ pIeS

2

2
+CS

∫ S

0
tβ(t)dt
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−Cl

∫ S

0
β(t)dt +Cp

∫ S

0
β(t)dt

−pIeM

∫ S

0
β(t)dt + C0

D
− Ch + θCp

θ2
.

and

g4(S)=β(S)
(
CSS −Cl +Cp −pIeM

)− C0Ie

D
+Cl +pIe (M +S)+ Ch

θ
.

Solving (28) and (29) by Newton–Raphson method (or any other bisec-
tion method), we can obtain the values of S∗

2 and T ∗
2 . Hence, the corre-

sponding minimum total annual relevant cost AC2(S
∗
2 , T ∗

2 ) can be obtained
by (14). Combining Cases 1 and 2, and assuming S∗ to be an interior solu-
tion for reality, we propose the following algorithm to obtain the optimal
solution of (S, T ). From Theorems 1 and 2, the reader can easily develop
a similar algorithm as below when S∗ is a boundary solution.

ALGORITHM

Step 1. Solving (17) and (18), we get the interior solution of (S,T ),
denoted by (S1, T1). If S1 + M � T1, then (S1, T1) is a solution to
Case 1, and the corresponding AC1(S1, T1) can be obtained by (12).
Otherwise, (S1, T1) is infeasible and set AC1(S1, T1)=∞.

Step 2. Solving (22) and (23), we get the interior solution of (S,T ),
denoted by (S2, T2). If T2 � S2 + M, then (S2, T2) is a solution to
Case 2, and the corresponding AC2(S2, T2) can be obtained by
(14). Otherwise, (S2, T2) is infeasible and set AC2(S2, T2)=∞.

Step 3. Comparing AC1(S1, T1) with AC2(S2, T2), we obtain AC(S∗, T ∗)=
Min {AC1 (S1, T1) ,AC2 (S2, T2)}. The optimal order quantity is
Q∗ = I2(S

∗)− I1(S
∗), and stop.

Case 3. The retailer pays off the total amount on its account at time M +S

with S <M +S �T .

To minimize the total annual relevant cost, taking the first derivative of
AC3 (S, T ) with respect to S and T, and setting the results to be zero, we obtain

∂AC3(S, T )

∂T
= −AC3 (S, T )

T
+ D

T

[
eθ(T −S)

(
Ch

θ
+Cp + Ie (T −M −S)Cp

)

−Ch

θ
− Ief (S, T ) /D − Iep (T −M −S)

]
=0, (30)
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and

∂AC3(S, T )

∂S
= D

T

{
− C0Ie

D
+ Ch

θ

[
1− eθ(T −S)

]+CsSβ(S)+Cl [1−β(S)]

+Cp
[−eθ(T −S) +β(S)

]−pIeMβ(S)

+Ie

∫ S

0
β(t)dt

(
p +pIe −Cp

)+pM

(
1+ Ie

M

2

)

−Cp
[
eθ(T −S) −1

]− Ie (T −M −S)

× (
β(S) (p +pIeM −Ch)+Cpeθ(T −S) −p

)}
=0. (31)

Let S∗
3 and T ∗

3 denote the optimal values of S and T, respectively, then
the optimal solution (S∗

3 , T ∗
3 ) satisfies (30) and (31) simultaneously. Solv-

ing (30) and (31) by Newton–Raphson method (or any other bisection
method), we can obtain the values of S∗

3 and T ∗
3 . If the Hessian matrix

of AC3 (S, T ) is positive definition, then the optimal solution (S∗
3 , T ∗

3 ) of
AC3 (S, T ) is global minimum. Similar to the above Algorithm, the reader
can develop an algorithm to determine the optimal solution for Cases 3
and 4.

5. Numerical Examples

In order to illustrate the preceding results, we provide the following numer-
ical examples. We study the differences between Abad’s exponential back-
logging rate and reciprocal backlogging rate.

EXAMPLE 1. Given θ = 0.08, D = 1000 units/year, C0 = $250 per order,
Ch = $80/unit, Cs = $120/unit, Cl = $300/unit, Cp = $150/unit, p = $240/unit,
Ic = 0.06/year, Ie = 0.04/year, M ={15/365,30/365,45/365 or 60/365} years
and β(x) = e−αx (e.g., see Papachristos and Skouri, 2000), where α =
{0,0.6,1,5,10,20, or 50}. The optimal values of AC (S,T ) for different
values of α, M and β(x)= e−αx are shown in Table 1. Note that the unit
of S∗ and T ∗ is in years in all tables below.

EXAMPLE 2. In this example, we use the same parameters as in Example 1.
However, we adopt the backlogging rate β(x)= (1+αx)−1 as in Chang and Dye
(1999). The computational results are shown in Table 2.

Comparing the total annual relevant costs between Tables 1 and 2, we
know that there is no significant difference between the negative exponen-
tial backlogging rate as in Papachristos and Skouri (2000) and the inverse
linear backlogging rate as in Chang and Dye (1999). Consequently, for con-
venience, we will use the negative exponential backlogging rate to do the
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Table 1. The optimal solutions of AC(S,T ) with β(x)= e−αx

α

M 0 0.6 1 5 10 20 50

15/365(=0.04110) S∗ 0.04376 0.02821 0.02284 0.00791 0.00436 0.00230 0.00095
T ∗ 0.09532 0.08569 0.08254 0.07425 0.07239 0.07133 0.07064
Q∗ 95.4279 85.5812 82.4200 74.2730 72.4840 71.4707 70.8149
AC (S∗, T ∗) 154847 155448 155672 156347 156518 156620 156688

30/365(=0.08219) S∗ 0.04377 0.02818 0.02282 0.00790 0.00436 0.00230 0.00095
T ∗ 0.09527 0.08559 0.08243 0.07412 0.07226 0.07120 0.07051
Q∗ 95.3726 85.4832 82.3180 74.1455 72.3534 71.3386 70.6819
AC (S∗, T ∗) 154453 155055 155280 155956 156127 156229 156297

45/365(=0.12329) S∗ 0.04377 0.02816 0.02277 0.00788 0.00434 0.00229 0.00095
T ∗ 0.09527 0.08558 0.08241 0.07411 0.07226 0.07120 0.07051
Q∗ 95.3726 85.4675 82.2954 74.1455 72.3483 71.3358 70.6807
AC (S∗, T ∗) 154059 154662 154887 155562 155733 155835 155902

60/365(=0.16438) S∗ 0.04377 0.02813 0.02276 0.00786 0.00433 0.00228 0.00094
T ∗ 0.09527 0.08556 0.08239 0.07411 0.07217 0.07119 0.07051
Q∗ 95.3726 85.4518 82.2719 74.1283 72.3433 71.3333 70.6795
AC (S∗, T ∗) 153664 154268 154494 155168 155339 155441 155508

Table 2. The optimal solutions of AC(S,T ) with β(x)= (1+αx)−1

α

M 0 0.6 1 5 10 20 50

15/365(=0.04110) S∗ 0.04376 0.02829 0.02297 0.00804 0.00445 0.00235 0.00097
T ∗ 0.09532 0.08575 0.08263 0.07434 0.07245 0.07137 0.07066
Q∗ 95.4279 85.6479 82.5144 74.3611 72.5415 71.5038 70.8317
AC (S∗, T ∗) 154847 155446 155669 156343 156516 156619 156689

30/365(=0.08219) S∗ 0.04377 0.02827 0.02295 0.00803 0.00444 0.00235 0.00097
T ∗ 0.09527 0.08566 0.08252 0.07421 0.07232 0.07123 0.07053
Q∗ 95.3726 85.5499 82.4062 74.2334 72.4108 71.3715 70.6986
AC (S∗, T ∗) 154453 155053 155277 155951 156125 156228 156296

45/365(=0.12329) S∗ 0.04377 0.02825 0.02292 0.00801 0.00443 0.00234 0.00097
T ∗ 0.09527 0.08564 0.08251 0.07421 0.07232 0.07123 0.07053
Q∗ 95.3726 85.5342 82.3897 74.2245 72.4055 71.3687 70.6973
AC (S∗, T ∗) 154059 154660 154883 155558 155731 155833 155901

60/365(=0.16438) S∗ 0.04378 0.02822 0.02289 0.00799 0.00442 0.00233 0.00097
T ∗ 0.09526 0.08562 0.08249 0.07420 0.07231 0.07123 0.07052
Q∗ 95.3726 85.5185 82.3732 74.2156 72.4003 71.3658 70.6961
AC (S∗, T ∗) 153664 154266 154490 155164 155337 155439 155507

sensitivity analysis for Cases 1 and 2 in different values of α, θ , Ic, Ie, and
Cl in Examples 3–5.

EXAMPLE 3. The parameters are the same as in Example 1, except for
M =30/365 years. However, we use different values of θ to study its effects
on the optimal solution. The computational results are shown in Table 3.
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Table 3. The sensitivity analysis on different parameters α and θ

α

θ 0 0.6 1 5 10 20 50

0.05 S∗ 0.04321 0.02775 0.02244 0.00773 0.00426 0.00224 0.33810
T ∗ 0.09647 0.08693 0.08382 0.07568 0.07386 0.07282 0.07215
Q∗ 96.5386 86.7905 83.6681 75.6459 73.8896 72.8958 72.2519
AC (S∗, T ∗) 154388 154966 155180 155818 155980 156075 156138

0.10 S∗ 0.04411 0.02849 0.02307 0.00801 0.00442 0.00233 0.00096
T ∗ 0.09451 0.08475 0.08155 0.07315 0.07126 0.07018 0.06948
Q∗ 94.6375 84.6634 81.4603 73.2006 71.3853 70.3567 69.6916
AC (S∗, T ∗) 154495 155113 155345 156045 156224 156330 156400

Table 4. The sensitivity analysis on different parameters Ic and Ie

Ic

Ie 0.02 0.04 0.06 0.08 0.10

0.02 S∗ 0.02243 0.02246 0.02248 0.02251 0.02253
T ∗ 0.08422 0.08370 0.08320 0.08272 0.08228
Q∗ 84.1267 83.5963 83.0943 82.6183 82.1664
AC (S∗, T ∗) 155761 155769 155776 155783 155789

0.08 S∗ 0.02350 0.02352 0.02354 0.02356 0.02358
T ∗ 0.08203 0.08157 0.08114 0.08073 0.08035
Q∗ 81.8920 81.4335 80.9998 80.5889 80.1990
AC (S∗, T ∗) 155449 155455 155460 155465 155469

EXAMPLE 4. In this example, we investigate the effects of Ic and Ie on
the total annual relevant cost when M = 15/365 years, θ = 0.08 and α =
1. The other parameters are the same as in Example 1. Consequently, we
obtain the numerical results as shown in Table 4.

EXAMPLE 5. In this example, we study the effect of Cl if α =0, 5, 10 or
50, Ic = 0.08/year, and Ie = 0.02/year. The rest of the parameters are the
same as in Example 1. Consequently, we obtain the numerical results as
shown in Table 5.

EXAMPLE 6. For illustrating the retailer pays off the total amount on its
account at time M + S (i.e., Cases 3 and 4), we give the following data:
θ =0.08, D =1000 units/year, C0 ={$250,or$1000} per order, Ch =$80/unit,
Cs =$120/unit, Cl =$300/unit, Cp =$150/unit, p={$240,or $300}/unit, Ic =
0.06/year, Ie =0.04/year, M ={15/365,30/365, or 45/365 years} and β(x)=
e−αx , where α = {1,or 10}. The numerical results for different values of
p,C0, α,M and β(x)= e−αx are shown in Table 6.
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Based on the computational results as shown in Tables 1–5, we obtain
the following managerial phenomena:

(1) For fixed M and θ , if the value of α is increasing, then the opti-
mal length of the shortage period S∗, the optimal length of the cycle
period T ∗ and the optimal order quantity Q∗ are decreasing simul-
taneously, yet the optimal total annual relevant cost AC(S∗, T ∗) is
increasing. A simple economic interpretation is as follows. A larger
value of α indicates a smaller backlogging rate. Therefore, the short-
age period S∗ and the order quantity Q∗ are getting smaller. How-
ever, the total cost AC(S∗, T ∗) is getting larger because a smaller
backlogging rate implies a larger amount of lost sales.

(2) For fixed α > 0 and θ , if the value of M is increasing, then the
optimal length of the shortage period S∗, the optimal length of the
cycle period T ∗, the optimal order quantity Q∗ and the optimal total
annual relevant cost AC(S∗, T ∗) are decreasing simultaneously. A sim-
ple economic interpretation is as follows. If the value of M is increas-
ing, then the benefit of the permissible delay is increasing. As a result,
the retailer should order less quantity Q∗ and shorten the cycle T ∗ in
order to take the permissible delay more often.

(3) For fixed M and α, if the value of θ is increasing, then the optimal
length of the shortage period S∗ and the optimal total annual rel-
evant costAC(S∗, T ∗) are increasing simultaneously, yet the optimal
length of the cycle period T ∗ and the optimal order quantity Q∗ are
decreasing simultaneously. A simple economic interpretation is as fol-
lows. If the deterioration rate θ is high, then the retailer should order
small quantity Q∗ (which implies a small cycle time T ∗) and increase
shortage period S∗ in order to reduce deteriorated items.

(4) For fixed M, θ , α and Ie, if the value of Ic is increasing, then the optimal
length of the shortage period S∗ and the optimal total annual relevant
cost AC(S∗, T ∗) are increasing simultaneously, yet optimal length of
the cycle period T ∗ and the optimal order quantity Q∗ are decreasing
simultaneously. A simple economic interpretation is as follows. If the
interest rate charged is higher, then the retailer should order less quan-
tity Q∗ (so is a smaller T ∗) and make the shortage period S∗ longer in
order to reduce the interest charged by the supplier.

(5) For fixed M, θ , α and Ic, if the value of Ie is increasing, then the
optimal length of the cycle period T ∗, the optimal order quantity Q∗

and the optimal total annual relevant cost AC(S∗, T ∗) are decreas-
ing simultaneously, yet the optimal length of the shortage period S∗

is increasing. A simple economic interpretation is as follows. If the
interest rate earned Ie is increasing, then the benefit of the permissi-
ble delay is increasing, too. As a result, the retailer should order less
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quantity Q∗ and shorten the cycle T ∗ in order to take the permissible
delay more frequently.

(6) For fixed M and α >0, if the value of Cl is increasing, then the opti-
mal length of the shortage period S∗, the optimal length of the cycle
period T ∗ and the optimal order quantity Q∗ are decreasing simul-
taneously, yet the optimal total annual relevant cost AC(S∗, T ∗) is
increasing. A simple economic interpretation is as follows. If cost of
lost sales Cl is high, then the retailer should shorten the shortage
period S∗ to reduce the number of lost sales.

Note that our second computational result contradicts the previous con-
clusion that the replenishment cycle generally increases, such as in Goyal
(1985), Jamal et al. (1997) and others. Our interpretation to this conflict
is the same as in Teng (2002). If a supplier provides a longer permissible
delay period to his/her retailer, then the retailer receives larger amount of
interest earned whenever he/she places an order. As a result, the retailer
should order less quantity and more often (i.e., a shorter replenishment
cycle time) in order to take the benefits of trade credit more frequently.

6. Conclusions

In this paper, we first established an appropriate mathematical model for
deteriorating items when the supplier offers a permissible delay in payment.
Our model is in a general framework that includes numerous previous mod-
els as special cases. We then provided the theoretical results to show that the
total annual relevant cost is a strictly pseudo-convex function. As a result,
we proved that there exists a unique interior optimal solution to the pro-
posed model, which simplifies the search for the global minimum to finding
a local minimum. Furthermore, we studied the sensitivity analysis on the
parameters, and concluded some interesting managerial phenomena, such as
the larger the α (or M), the smaller the S∗ (and Q∗).

The proposed model can be extended in several ways. For instance, we
may extend the deterministic demand function to a stochastic demand pat-
tern. Also, we could generalize the model to allow for quantity discount.
Finally, we could consider the problem of simultaneously setting price,
quality, and order quantity for a product in which its demand is a func-
tion of unit selling price as well as product quality.
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Appendix A. Proof that Hessian matrix of AC1(S,T ) at point (S∗
1 , T ∗

1 ) is
positive definite

∂2AC1(S, T )

∂T 2
= D

T
eθ(T −S)

(
Ch + θCp +CpIce−θM

)

− 2
T

(
∂AC1 (S, T )

∂T

)
, (A.1)

∂2AC1 (S, T )

∂S2
= D

T

{
eθ(T −S)

(
Ch + θCp +CpIce−θM

)− (
Cl −Cp

)
β ′(S)

+Cs
[
β(S)+Sβ ′(S)

]−pIeMβ ′(S)
}
, (A.2)

and

∂2AC1(S, T )

∂S∂T
=− 1

T

(
∂AC1 (S, T )

∂S

)

−D

T
eθ(T −S)(Ch + θCp +CpIce−θM). (A.3)

The first principal minor of the Hessian matrix H at point (S∗
1 , T ∗

1 ) is

|H11|= ∂2AC1(S, T )

∂T 2

∣∣∣∣
S∗

1 ,T ∗
1

= D

T ∗
1

eθ(T ∗
1 −S∗

1)(Ch + θCp +CpIce−θM)>0.

(A.4)

The second principal minor of H at point
(
S∗

1 , T ∗
1

)
is

|H22|=
(

D

T ∗
1

)2

eθ(T ∗
1 −S∗

1)
(
Ch + θCp +CpIce−θM

)

×{− (
Cl −Cp

)
β ′(S∗

1

)+CS [β
(
S∗

1

)+S∗
1β ′ (S∗

1

)
]−pIeMβ ′ (S∗

1

)}
=

(
D

T ∗
1

)2

eθ(T ∗
1 −S∗

1)(Ch + θCp +CpIce−θM)

×{[(Cp +CsS
∗
1 )− (Cl +pIeM)]β ′(S∗

1 )+CSβ(S∗
1 )}. (A.5)

Note that one of the referees provided us a brilliant and simple proof of
|H22|>0 as follows. The maximal total cost (i.e., purchase cost and short-
age cost, or Cp +CsS) of satisfying a unit of backlogged demand must less
than the total opportunity cost (i.e., cost of lost sales and interest that
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could be earned, or Cl +pIeM) to turn down a unit of demand. Otherwise,
the retailer will just ignore the demand backlogged at the beginning of the
cycle since it is not profitable to satisfy the backlogged demand. As a result
of Cp +CsS <Cl +pIeM, we can easily obtain that |H22|>0. This completes
the proof.

Appendix B. Proof of Theorem 1

Let F(S,T )= AC1(S, T )T > 0. Similar to the proof in Appendix A, we can
easily show that F(S,T ) is a strictly convex function for 0 � S < T . Next,
for any two distinct points in J , say (S1, T1) and (S2, T2), if AC1 (S1, T1)�
AC1 (S2, T2), then

F (S2, T2)

F (S1, T1)
� T2

T1
⇔ F (S2, T2)−F (S1, T1)

F (S1, T1)
� T2 −T1

T1
. (B.1)

Since F(S,T ) is a strictly convex function, we know

F(S2, T2)>F(S1, T1)+ ∂F (S, T )

∂T

∣∣∣∣
S1,T1

(T2 −T1)+ ∂F (S, T )

∂S

∣∣∣∣
S1,T1

(S2 −S1),

(B.2)

and hence

F(S2, T2)−F(S1, T1)>
∂F(S, T )

∂T

∣∣∣∣
S1,T1

(T2 −T1)+ ∂F (S, T )

∂S

∣∣∣∣
S1,T1

(S2 −S1).

(B.3)

Combining (B1) and (B3), we obtain

∂F (S, T )

∂T

∣∣∣∣
S1,T1

(T2 −T1)+ ∂F (S, T )

∂S

∣∣∣∣
S1,T1

(S2 −S1)<
F (S1, T1) [T2 −T1]

T1
,

(B.4)

Dividing (B4) by T1, we have

∂F (S,T )

∂T

∣∣∣
S1,T1

(T2 −T1)+ ∂F (S,T )

∂S

∣∣∣
S1,T1

(S2 −S1)

T1
<

AC1(S1, T1) [T2 −T1]
T1

,

⇔

[
∂F (S,T )

∂T

∣∣∣
S1,T1

−AC1(S1, T1)

]
(T2−T1)+ ∂F (S,T )

∂S

∣∣∣
S1,T1

(S2−S1)

T1
<0

⇔
[

1
T

∂F(S, T )

∂T
−F(S,T )

T 2

]∣∣∣∣
S1,T1

(T2−T1)+ 1
T

∂F(S, T )

∂S
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S1,T1

(S2 −S1)<0
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⇔ ∂AC1(S, T )

∂T

∣∣∣∣
S1,T1

(T2 −T1)+ ∂AC1(S, T )

∂S

∣∣∣∣
S1,T1

(S2 −S1)<0. (B.5)

Applying the result obtained by Bazarra et al. (1993, p. 114), we know that
AC1(S, T ) is a strictly pseudo-convex function on J. This completes the
proof of (a).

From (16), we set

G(S)= D

T

{
−C0Ie

D
+ Ch

θ

[
1− eθ(T −S)

]+CsSβ(S)+Cl [1−β(S)]

+Cp
[−eθ(T −S)+β(S)

]+CpIc

θ

[
1− eθ(T −M−S)

]−pIeMβ(S)

}
.

(B.6)

Since AC1 (S, T ) is strictly convex in S, we know that the first derivate of
G(S) with respect to S must be positive (i.e., G′(S)> 0). Hence, G(S) is a
strictly increasing function in S, for S ∈ (0, T ). In addition, we have

G(0)= D

T

{
−C0Ie

D
− Ch

θ

[
eθT −1

]−Cp
[
eθT −1

]

−CpIc

θ

[
eθ(T −M) −1

]−pIeM

}
<0. (B.7)

G(T )= D

T

{
−C0Ie

D
−pIeMβ(T )+CsTβ(T )+ (

Cl −Cp
)

[1−β(T )]

+CpIc

θ

[
1− e−θM

]}
. (B.8)

Hence, if CsTβ(T )+ (Cl −Cp) [1−β(T )]+ CpIc

θ
[1−e−θM ]> C0Ie

D
+ pIeMβ(T ),

then G(T )> 0, which in turn implies that there exists a unique S∗ ∈ (0, T )

such that G(S∗)=0. This completes the proof of (b).
Similarly, if CsTβ(T ) + (Cl − Cp)[1 − β(T )] + CpIc

θ
[1 − e−θM ] � C0Ie

D
+

pIeMβ(T ), then G(T ) � 0, which implies that AC1 (S, T ) is minimized if
S∗

1 =T1. This proves (c).
Now, let us prove part (d). If T →0+, then S →0+, M →0+, and thus

lim
T →0+

AC1 (S, T )= lim
T →0+

C0/T =∞. (B.9)



270 L. -Y. OUYANG ET AL.

Similarly, if T →∞, then

lim
T →∞

AC1 (S, T )=
{

lim
T →∞

H ′(T )

1

}

−ChD

θ
− CpDIc

θ
(by L’Hôpital’s Rule),

= lim
T →∞

{
ChDeθ(T −S)

θ
+CpDeθ(T −S) + CpDIceθ(T −M−S)

θ

}

−ChD

θ
− CpDIc

θ
=∞, (B.10)

where

H(T )=
{

C0(1−SIe)+ ChD
[
eθ(T −S) −1+ θS

]
θ2

+CSD

∫ S

0
tβ(t)dt

+ClD

[
S −

∫ S

0
β(t)dt

]
+

CpD
[(

eθ(T −S) −1
)+ θ

∫ S

0 β(t)dt
]

θ

+CpDIc
[
eθ(T −M−S) −1+ θ (M +S)

]
θ2

−
pDIeM

[
M +2

∫ S

0 β(t)dt
]

2

⎫⎬
⎭ . (B.11)

From (a), (B9), and (B10), we know there exists a unique optimal T ∗
1 (with

0<T ∗
1 <∞). This completes the proof of (d).
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